

Boycort, B. B. (1954). Learning in Octof vulgaris and other cephalopods. Pubbl. Staz. zool Napoli, 25, 67-93.
Boctt, B. B. \& Young, J. Z. (1955). A ri mory system in Octopus vulgaris Lamarck. Proc. Roy. Soc. B, 143, $449-80$.
ycotr, B. B. \& YOUNG, J. Z. (1957). ₹ects of interference with the vertical lobe on visual discriminations in Octopus vulgaris Zamiarck. Proc. Roy. Soc. B, 146, 439--59.
Sutherland, N. S. (1957). Visual discrimination of orientation by Octopus. Brit. 7. Psychol. 48, 55-7I.
Wells, M. J. \& Wells, J. (1956). Tactile discrimination and the hehaviour of blind Octopus. Pubbl. Staz. zool. Napoli, 28, 94-126.
Wells, M. J. \& Wells, J. (1957 a). The effect of lesions to the vertical and optic lobes on tactile discrimination in Octopus. F. Exp. Biol. 34, 378-93.
Wells, M. J. \& Wells, J. (1957 b). Repeated presentation experiments and the function of the vertical lobe in Octopus. F. Exp. Biol. 34, 469-77
Wells, M. J. \& Wells, J. (1957c). The function of the brain of Octopus in tactile discrimination. F. Exp. Biol. 34, 131-42.

Wells, M. J. \& Wells, J. (1958). The influence of preoperational training on the performance of octopuses following vertical lobe removal. F. Exp. Biol. 35, 324-36.
Young, J. Z. (1951). Growth and plasticity in the nervous system. Proc. Roy. Soc. B, 139, 18 -37. vertical lobes. Proc. Roy.Soc. B (in the Press)

Anne J. Alexander and D. W. Ewer
Waxay from an unpleasant stimulus or a displacement activity arising from a conflict between opposing photopositive and photonegative drives.
Interpreted in terms of its normal life, these observations imply that as temperatures rise and general activity of the animal increases, the light reaction will not direct the animal in such a way as to cause it to leave the safety of its burrow, but rather its reversal of sign will result in the scorpion retreating into the deeper parts which, as rough measurements in the field have shown, may be more than $20^{\circ} \mathrm{C}$. below the soil temperature outside. It would seem that this reversal of light behaviour is the basis of an escape from a potentially lethal position.

It is interesting to note that the protective behaviour pattern of this scorpion in relation to high temperature has two facets-a static postural behaviour pattern which permits a certain degree of regulation, followed by a dynamic locomotory pattern which allows the animal to evade the difficulty by leaving the potentially lethal enviroiment.

During the course of this investigation one of us (A.J.A.) held a bursary granted by the South African Council for Scientific and Industrial Research, to whom our thanks are due.

SUMMARY

1. Behaviour termed 'stilting' is described for the scorpion, Opisthophthalmus latimanus. In this pattern the legs are straightened, lifting the body clear of the substratum.
2. Evidence is submitted that it is not concerned with allowing greater respiratory exchange.
3. Stilting is generally elicited in response to a rise in environmental temperature above $18^{\circ} \mathrm{C}$. and is invariably found at temperatures above $28^{\circ} \mathrm{C}$.
4. A comparison using scorpions held in the stilted and normal resting stance, shows that, when the environmental temperature rises sharply, the body temperature of the resting animal rises rapidly, while that of the stilting animal is almost unchanged. The mechanism of this effect is shown to be due largely to the increased circulation of air around the animal which is permitted by the stilting.
5. From observations of behaviour in both the laboratory and the field, it appears probable that the stilting pattern is shown by O. latimanus during the hot hours of the day when the scorpion waits in the entrance of its burrow to catch prey.
6. Laboratory observations indicate that when the temperature becomes so high that stilting has no longer any protective value, a photopositive reaction, which would keep the scorpion at the entrance of its burrow, changes to a photonegative one and the animal can retreat into the cool depths of its burrow.

REFERENCES
Cloudsley-Thompson, J. L. (1955). On the function of the pectine of the scorpion. Ann. Mag. nat. Hist. (12) 8, 556-60.
Colbert, E. H., Cowles, R. B. \& Bogert, C. M. (1946). Temperature tolerances in the American alligator and their bearing on the habits, evolution and extinction of the Dinosaurs. Bull. Amer. Mus. nat. Hist. 86, 333-73.
Digby, P. S. B. (1955). Factors affecting the temperature excess of insects in sunshine. F. exp. Biol. 32, 279-98.
Parry, D. A. (1951). Factors determining the temperature of terrestrial arthropods in sunlight. f. exp. Biol. 28, 445-62.

Sergent, L. (1947). Abris des Scorpions. Arch. Inst. Pasteur d'Algérie, 25, 206-9. Southcotr, R. V. (1955). Some observations on the biology, including mating and other behaviour, of the Australian scorpion, Urodacus abruptus Pocock. Trans. Roy. Soc. Aust. 78, 145-54. Ubisch, M. von (1922). U'ber eine neue Jurus-art aus Kleinasien nebst einiger Bemerkungen über die Function der Kamme der Scorpione. Zool. Fbb. (Abt. Syst.), 44, 503-16. Wigglesworth, V. B. (1950). The Principles of Insect Physiology. London: Methuen.

